Telegram Group & Telegram Channel
Что, если "сильный" интеллект в принципе нельзя спроектировать?

Создать интеллект в принципе возможно, и мы сами являемся доказательством этого. И вот уже десятки лет инженеры шаг за шагом развиваются в проектировании интеллектуальных систем. Они способны решать всё более впечатляющие задачи в заданных рамках, но мы так и не смогли получить систему, обобщающую и переиспользующую знания так же круто, как мы.

Мы давно отошли от идеи "экспертных систем", т.е. записывания знаний о мире вручную, так как поняли, что их слишком много, как и подводных камней. Теперь мы обучаем модели с помощью машинного обучения, имея только данные, создавая "программы", решающие, например, задачу классификации, не записывая правило вручную.

Но что, если это тоже тупиковый путь в вопросе создания более общего интеллекта? Что, если для нашего мозга спроектировать интеллект нашего уровня - либо невозможная, либо слишком объёмная задача? У нас нет оснований быть уверенным ни в этом, ни в обратном. Одно мы знаем точно - наш интеллект является именно продуктом оптимизации. Может быть, нам надо создать интеллект с помощью оптимизации?

Очевидные возражения здесь связаны с тем, что эволюции потребовались на это миллиарды лет, и пересимулировать данный процесс это слишком затратная задача. Но у меня есть основания для оптимизма:

1) Нам не нужно симулировать всё. Мало того, что жизнь не пыталась найти именно интеллект, она в основном была занята адаптацией жизни к постоянно меняющимся ограничениям физического мира, к его законам, и многими другими вещами, которые нам точно можно не эмулировать.
2) Эволюция нашла сам интеллект очень быстро. Он появился за время порядка сотни тысяч лет, т.е. за десятки тысяч итераций. Это значит, что, скорее всего, наш интеллект это результат небольшой пересборки системы из уже готовых механизмов, которые нужны для гораздо более простых задач.

То есть, всё, что нужно - это
1) Грамотная параметризация системы. Она может в корне отличаться от того, что обычно в ML, например, похожа на человеческую - т.е. кодировать параметрами поведение одного кусочка системы и то, как она строится с нуля.
2) Грамотный "план" обучения - то есть последовательный список усложняющихся задач, который позволит сначала "найти" общий функционал млекопитающих, потом всё умнее, умнее, и так до нас.

Вам интересна эта тема? Ставьте 👾, если экспериментируете с опасными ИИ-технологиями у себя в гараже, и вам нужны идеи для проверки.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/75
Create:
Last Update:

Что, если "сильный" интеллект в принципе нельзя спроектировать?

Создать интеллект в принципе возможно, и мы сами являемся доказательством этого. И вот уже десятки лет инженеры шаг за шагом развиваются в проектировании интеллектуальных систем. Они способны решать всё более впечатляющие задачи в заданных рамках, но мы так и не смогли получить систему, обобщающую и переиспользующую знания так же круто, как мы.

Мы давно отошли от идеи "экспертных систем", т.е. записывания знаний о мире вручную, так как поняли, что их слишком много, как и подводных камней. Теперь мы обучаем модели с помощью машинного обучения, имея только данные, создавая "программы", решающие, например, задачу классификации, не записывая правило вручную.

Но что, если это тоже тупиковый путь в вопросе создания более общего интеллекта? Что, если для нашего мозга спроектировать интеллект нашего уровня - либо невозможная, либо слишком объёмная задача? У нас нет оснований быть уверенным ни в этом, ни в обратном. Одно мы знаем точно - наш интеллект является именно продуктом оптимизации. Может быть, нам надо создать интеллект с помощью оптимизации?

Очевидные возражения здесь связаны с тем, что эволюции потребовались на это миллиарды лет, и пересимулировать данный процесс это слишком затратная задача. Но у меня есть основания для оптимизма:

1) Нам не нужно симулировать всё. Мало того, что жизнь не пыталась найти именно интеллект, она в основном была занята адаптацией жизни к постоянно меняющимся ограничениям физического мира, к его законам, и многими другими вещами, которые нам точно можно не эмулировать.
2) Эволюция нашла сам интеллект очень быстро. Он появился за время порядка сотни тысяч лет, т.е. за десятки тысяч итераций. Это значит, что, скорее всего, наш интеллект это результат небольшой пересборки системы из уже готовых механизмов, которые нужны для гораздо более простых задач.

То есть, всё, что нужно - это
1) Грамотная параметризация системы. Она может в корне отличаться от того, что обычно в ML, например, похожа на человеческую - т.е. кодировать параметрами поведение одного кусочка системы и то, как она строится с нуля.
2) Грамотный "план" обучения - то есть последовательный список усложняющихся задач, который позволит сначала "найти" общий функционал млекопитающих, потом всё умнее, умнее, и так до нас.

Вам интересна эта тема? Ставьте 👾, если экспериментируете с опасными ИИ-технологиями у себя в гараже, и вам нужны идеи для проверки.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/75

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

If riding a bucking bronco is your idea of fun, you’re going to love what the stock market has in store. Consider this past week’s ride a preview.The week’s action didn’t look like much, if you didn’t know better. The Dow Jones Industrial Average rose 213.12 points or 0.6%, while the S&P 500 advanced 0.5%, and the Nasdaq Composite ended little changed.

Knowledge Accumulator from es


Telegram Knowledge Accumulator
FROM USA